# What is compensated gradient

To explain how gradient-moment nulling works, it is necessary to make use of a fact developed in the Advanced Discussion section of the prior Q&A on Even-Echo Rephasing. Here we showed that for constant velocity flow (*v*) through a constant gradient (*G*), total phase shift (Φ) increases quadratically with time (*T*). In other words

Φ = *KT²*

where *K* = ½ *γ** G v* is a constant when velocity and readout gradient strength are also constant.

This quadratic dependence of total phase gain upon time is shown in the figure below. Note that after 1, 2, 3, and 4 gradient intervals each of duration *T*, the phase has increased quadratically to* KT**²*, 4*KT**²*, 9*KT**²*, and *16KT**²* respectively. The *incremental *phase contributions of the 1st, 2nd, 3rd, and 4th gradient intervals are therefore * KT**²*, *3KT**²*, *5KT**²*, and *7KT**²*, respectively.

Let us now consider in a more quantitative way the first-order gradient-moment nulling pulse sequence previously diagrammed..

To analyze what happens to a spin moving at constant velocity, we will do an incremental phase calculation similar to that performed for the even-echo rephasing case. After the first block, the phase should again be * KT**²*. The incremental phase contribution from the two blocks that compose the second lobe is 2 x (−*3KT**²* = −*6KT**²*. The net phase of the moving spins immediately after the double block is therefore *KT**²* −*5KT**²* = .−*5KT**²*. Finally, the first readout block contributes its incremental *+5KT**²*, yielding a net phase of zero at *t = TE*. By adding these extra gradient blocks, we have compensated or corrected for phase dispersions attributable to constant velocity.

The above example describes first-order (velocity) gradient-moment nulling. The method can be easily extended by to compensate for phase dispersions due to second-order (acceleration), third-order ("jerk"), and even higher degrees of motion. These higher order corrections require more gradient lobes (specifically, *n+1* additional lobes, where *n* = motion order to be compensated). These extra lobes take time to play out, so using higher order GMN even further lengthens minimum *TE* and reduces number of slices for a given *TR*. Also, the effectiveness of the method decreases as the order increases. In practice, therefore, velocity-compensated GMN is nearly exclusively used, with acceleration-compensated GMN performed only occasionally.

- What is Slaughters most successful song
- Where can I use a silicone sealant
- When and where did sexism start
- Can I buy gold now
- What is table sugar
- What is customer success
- How can I learn Sanskrit Vedic poems
- What determines biological inheritance
- Why was lower Egypt named lower Egypt
- Can we form a wormhole on earth
- How do I start learning Windows programming
- How can I get a smaller bum
- Who hacked Quora
- Is being stoic a psychopathic trait
- Is LNCT Bhopal good for medical
- What are the aesthetics of martial arts
- Is cinema sound stereo
- Why am I sad everyday and night