How do cells contain genetic information

Intracellular communication

A cell with its many different DNA, RNA, and protein molecules is quite different from a test tube containing the same components. When a cell is dissolved in a test tube, thousands of different types of molecules randomly mix together. In the living cell, however, these components are kept in specific places, reflecting the high degree of organization essential for the growth and division of the cell. Maintaining this internal organization requires a continuous input of energy, because spontaneous chemical reactions always create disorganization. Thus, much of the energy released by ATP hydrolysis fuels processes that organize macromolecules inside the cell.

When a eukaryotic cell is examined at high magnification in an electron microscope, it becomes apparent that specific membrane-bound organelles divide the interior into a variety of subcompartments. Although not detectable in the electron microscope, it is clear from biochemical assays that each organelle contains a different set of macromolecules. This biochemical segregation reflects the functional specialization of each compartment. Thus, the mitochondria, which produce most of the cell’s ATP, contain all of the enzymes needed to carry out the tricarboxylic acid cycle and oxidative phosphorylation. Similarly, the degradative enzymes needed for the intracellular digestion of unwanted macromolecules are confined to the lysosomes.

cellular compartmentpercent of total cell volumeapproximate number per cell
endoplasmic reticulum plus Golgi apparatus151

It is clear from this functional segregation that the many different proteins specified by the genes in the cell nucleus must be transported to the compartment where they will be used. Not surprisingly, the cell contains an extensive membrane-bound system devoted to maintaining just this intracellular order. The system serves as a post office, guaranteeing the proper routing of newly synthesized macromolecules to their proper destinations.

All proteins are synthesized on ribosomes located in the cytosol. As soon as the first portion of the amino acid sequence of a protein emerges from the ribosome, it is inspected for the presence of a short “endoplasmic reticulum (ER) signal sequence.” Those ribosomes making proteins with such a sequence are transported to the surface of the ER membrane, where they complete their synthesis; the proteins made on these ribosomes are immediately transferred through the ER membrane to the inside of the ER compartment. Proteins lacking the ER signal sequence remain in the cytosol and are released from the ribosomes when their synthesis is completed. This chemical decision process places some newly completed protein chains in the cytosol and others within an extensive membrane-bounded compartment in the cytoplasm, representing the first step in intracellular protein sorting.

The newly made proteins in both cell compartments are then sorted further according to additional signal sequences that they contain. Some of the proteins in the cytosol remain there, while others go to the surface of mitochondria or (in plant cells) chloroplasts, where they are transferred through the membranes into the organelles. Subsignals on each of these proteins then designate exactly where in the organelle the protein belongs. The proteins initially sorted into the ER have an even wider range of destinations. Some of them remain in the ER, where they function as part of the organelle. Most enter transport vesicles and pass to the Golgi apparatus, separate membrane-bounded organelles that contain at least three subcompartments. Some of the proteins are retained in the subcompartments of the Golgi, where they are utilized for functions peculiar to that organelle. Most eventually enter vesicles that leave the Golgi for other cellular destinations such as the cell membrane, lysosomes, or special secretory vesicles. (For further discussion, see belowInternal membranes.)