下滑

服务项目

  • 网站设计开发

    WEB

    高端品牌网站设计/电商平台建设/营销类网站/响应式网页设计/手机网页开发

  • 移动应用开发

    APP

    iOS/Android/微信公众平台 APP交互设计、视觉设计、HTML5开发、功能定制开发

  • UI/UX设计

    DESIGN

    图形界面设计/交互设计/用户测试研究/用户体验设计

  • 互联网平台建设

    Internet

    多操作系统多平台的应用软件交互设计、视觉设计、应用端开发服务

新闻动态

案例作品


  勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

  勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

blob.png

 

 

  在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

  在这个定理的证明中,我们需要如下四个辅助定理:

  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

  三角形面积是任一同底同高之平行四边形面积的一半。

  任意一个正方形的面积等于其二边长的乘积。

  任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

blob.png

  欧几里得证法

  证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

  设△ABC为一直角三角形,其直角为∠CAB。

  其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

  画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

  分别连接CF、AD,形成△BCF、△BDA。

  ∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

  ∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

  因为AB=FB,BD=BC,所以△ABD≌△FBC。

  因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

  因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

  因此四边形BDLK=BAGF=AB2。

  同理可证,四边形CKLE=ACIH=AC2。

  把这两个结果相加,AB2+AC2=BD×BK+KL×KC

  由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

  由于CBDE是个正方形,因此AB2+AC2=BC2,即a2+b2=c2。

  此证明是于欧几里得《几何原本》一书第1.47节所提出的。

  由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。

来源:趣历史      日期:2018-07-24
 

关于我们

固始县愚香菱火工产品发展招商中心成立于2012年,由一群有着创新精神和极客精神的年轻人组成。
为众多企业提供了品牌创意策划、线上形象设计以及产品开发服务。我们喜爱创新,热衷挑战。对每个项目
的设计研发我们都投入很大的精力与心血,并准备着为一个好的创意通宵达旦。

联系我们

一次需求提交或许正是成就一个出色产品的开始。
欢迎填写表格或发送合作邮件至:9999999999@qq.com

固始县愚香菱火工产品发展招商中心

电话:9999999999

邮箱:999999@qq.com

地址:海口市龙华区国贸玉沙路